

Dependency Injection Documentation

Warning

This Document Page Under Construction

Dependency Injection is a technique in which an object receives other
objects that it depends on, called dependencies. Typically, the receiving
object is called a client and the passed-in (‘injected’) object is called a
service. The code that passes the service to the client is called the injector.
Instead of the client specifying which service it will use, the injector tells
the client what service to use. The ‘injection’ refers to the passing of a
dependency (a service) into the client that uses it.

Table of Content

	Overview
	Roles

	Pros

	Cons

	Install
	Linux and Mac OS

	Windows (CMD/PowerShell)

	Using the Container
	__setitem__

	__getitem__

	Definitions
	Lazy Loading

	Definition types

	How to contribute
	Roles

	RTC model

	Changelog
	v0.1.0 (2021-08-23)

	v0.0.2 (2021-08-22)

	v0.0.1 (2021-08-21)

Overview

Warning

This Document Page Under Construction

Dependency Injection is a technique in which an object receives other
objects that it depends on, called dependencies. Typically, the receiving
object is called a client and the passed-in (‘injected’) object is called a
service. The code that passes the service to the client is called the injector.
Instead of the client specifying which service it will use, the injector tells
the client what service to use. The ‘injection’ refers to the passing of a
dependency (a service) into the client that uses it.

Dependency injection solves the following problems:

	How can a class be independent of how the objects on which it depends are created?

	How can the way objects are created be specified in separate configuration files?

	How can an application support different configurations?

Creating objects directly within the class commits the class to particular
implementations. This makes it difficult to change the instantiation at
runtime, especially in compiled languages where changing the underlying objects
can require re-compiling the source code.

Dependency injection separates the creation of a client’s dependencies from the
client’s behavior, which promotes loosely coupled programs and the dependency
inversion and single responsibility principles. Fundamentally, dependency
injection is based on passing parameters to a method.

Dependency injection is an example of the more general concept of inversion of
control.

Roles

Dependency injection involves four roles:

	the service objects to be used

	the client object, whose behavior depends on the services it uses

	the interfaces that define how the client may use the services

	the injector, which constructs the services and injects them into the client

Any object that may be used can be considered a service. Any object that
uses other objects can be considered a client. The names relate only to the
role the objects play in an injection.

The interfaces are the types the client expects its dependencies to be. The
client should not know the specific implementation of its dependencies, only
know the interface’s name and API. As a result, the client will not need to
change even if what is behind the interface changes. Dependency injection can
work with true interfaces or abstract classes, but also concrete services,
though this would violate the dependency inversion principle and sacrifice the
dynamic decoupling that enables testing. It is only required that the client
never treats its interfaces as concrete by constructing or extending them. If
the interface is refactored from a class to an interface type (or vice versa)
the client will need to be recompiled. This is significant if the client and
services are published separately.

The injector introduces services to the client. Often, it also constructs
the client. An injector may connect a complex object graph by treating the same
object as both a client at one point and as a service at another. The injector
itself may actually be many objects working together, but may not be the client
(as this would create a circular dependency). The injector may be referred to
as an assembler, provider, container, factory, builder, spring, or construction
code.

Pros

A basic benefit of dependency injection is decreased coupling between classes
and their dependencies. By removing a client’s knowledge of how its
dependencies are implemented, programs become more reusable, testable and
maintainable.

This also results in increased flexibility: a client may act on anything that
supports the intrinsic interface the client expects.

Many of dependency injection’s benefits are particularly relevant to
unit-testing.

For example, dependency injection can be used to externalize a system’s
configuration details into configuration files, allowing the system to be
reconfigured without recompilation. Separate configurations can be written for
different situations that require different implementations of components. This
includes testing. Similarly, because dependency injection does not require any
change in code behavior it can be applied to legacy code as a refactoring. The
result is clients that are more independent and that are easier to unit test in
isolation using stubs or mock objects that simulate other objects not under
test. This ease of testing is often the first benefit noticed when using
dependency injection.

More generally, dependency injection reduces boilerplate code, since all
dependency creation is handled by a singular component.

Finally, dependency injection allows concurrent development. Two developers can
independently develop classes that use each other, while only needing to know
the interface the classes will communicate through. Plugins are often developed
by third party shops that never even talk to the developers who created the
product that uses the plugins.

Cons

Creates clients that demand configuration details, which can be onerous when
obvious defaults are available.

Make code difficult to trace because it separates behavior from construction.

Is typically implemented with reflection or dynamic programming. This canhinder
IDE automation.

Typically requires more upfront development effort.

Forces complexity out of classes and into the links between classes which might
be harder to manage.

Encourage dependence on a framework.

Install

These instructions will install Dependency Injection package. Dependency
Injection is a Python package that supports Python 3 on Linux, MacOS and
Windows. We recommend using Python 3.6 or higher.

Linux and Mac OS

To install Dependency Injection package run:

python3 -m venv mediapills

source mediapills/bin/activate

pip install mediapills.dependency_injection

Windows (CMD/PowerShell)

To install Dependency Injection package on Windows (CMD/PowerShell)

To install Dependency Injection package run:

python3 -m venv mediapills

./mediapills/bin/activate

pip install mediapills.dependency_injection

Using the Container

Warning

This Document Page Under Construction

This documentation describes the API of the Container object itself.

__setitem__

You can set entries directly on the container:

>>> from mediapills.dependency_injection import Container

>>> di = Container()

>>> di['key'] = 'value'

>>> di['key']

'value'

__getitem__

You can get entries from the container:

>>> from mediapills.dependency_injection import Container

>>> di = Container({"key": "value"})

>>> di['key']

'value'

>>> di.get('key')

'value'

>>> di.get(None, 'default')

'default'

Definitions

Warning

This Document Page Under Construction

Lazy Loading

Lazy loading (also known as asynchronous loading) is a design pattern
commonly used in computer programming and mostly in web design and development
to defer initialization of an object until the point at which it is needed. It
can contribute to efficiency in the program’s operation if properly and
appropriately used.

Container loads the definitions you have written and uses them like
instructions on how to create objects.

However those objects are only created when/if they are requested from the
Container, for example through container.get(…) or when they need to
be injected in another object. That means you can have a large amount of
definitions, Container will not create all the objects unless asked
to.

Definition types

This definition format is the most powerful of all. There are several kind of entries you can define:

	Scalars

	Generic Container Type Objects

	Objects

	Aliases

	Environment Variables

	String Expressions

	arrays

Scalars

Scalars are simple Python values:

>>> from mediapills.dependency_injection import Container

>>> di = Container({
... 'database.driver': 'mysql',
... 'database.host': '127.0.0.1',
... 'database.port': 80,
... 'database.auth': False,
... 'database.user': 'root',
... })

>>> di['database.host']

'127.0.0.1'

You can also define object entries by creating them directly:

>>> from mediapills.dependency_injection import Container

>>> di = Container()

>>> di['key'] = 'value'

>>> di['key']

'value'

However this is not recommended as that object will be created for every
entry invocation, even if not used (it will not be lazy loaded like explained
at this section).

Generic Container Type Objects

Container supports any object that holds an arbitrary number of other
objects. Examples of containers include tuple, list, set,
dict; these are the built-in containers.

>>> from mediapills.dependency_injection import Container

>>> di = Container()

>>> di['parameters'] = {
... 'database.host': '127.0.0.1',
... 'database.port': '80',
... 'database.user': 'root',
... }

>>> di['parameters']

{'database.host': '127.0.0.1', 'database.port': '80', 'database.user': 'root'}

Factories

Warning

This Page Section Under Construction

Objects

Services are defined by anonymous functions that return an instance of an
object:

define some services
container['session_storage'] = lambda di: (
 SessionStorage('SESSION_ID')
)

container['session'] = lambda di: (
 Session(di['session_storage'])
)

Notice that the anonymous function has access to the current container
instance, allowing references to other services or parameters.

As objects are only created when you get them, the order of the definitions
does not matter.

Using the defined services is also very easy:

get the session object
session = injector['session']

the above call is roughly equivalent to the following code:
storage = SessionStorage('SESSION_ID')
session = Session(storage)

Autowired Objects

Warning

This Page Section Under Construction

Aliases

You can alias an entry to another using the Container:

define arguments container
container['arguments'] = lambda _: sys.argv

define arguments container alias with name properties
container['properties'] = lambda di: di['arguments']

Allows the interface of an existing location to be used as another name.

Environment Variables

You can get an environment variable’s value using the Container:

>>> container['env'] = lambda _: os.environ

>>> di['env'].get("LANGUAGE")

'en_US'

String Expressions

Warning

This Page Section Under Construction

Wildcards

Warning

This Page Section Under Construction

How to contribute

There are lots of ways to contribute to the project. People with different
expertise can help to improve the web content, the documentation, the code,
and the tests. Even this README file is a result of collaboration of multiple
people.

unit tests : A software project is as good as its tests are.
Following this simple idea, we are trying to cover the integration
capabilities with automated tests. If you’re passionate about the quality -
please consider chiming in.

doc : Have you seen a project that doesn’t need to improve its
documentation?!

website : We are using GH pages to build and manage the site’s content.
If you’re interested in making it better, check-out gh-pages branch and dig in.
If you are not familiar with the Github Pages [https://pages.github.com]
- check it out, it’s pretty simple yet powerful!

giving feedback : Tell us how you use maediapills.dependency-injection, what was great and what was
not so much. Also, what are you expecting from it and what would you like to
see in the future? Opening an issue [https://github.com/mediapills/dependency-injection/issues]
will grab our attention. Seriously, this is the great way to contribute!

Roles

Much like projects in
ASF [https://www.apache.org/foundation/how-it-works.html#roles],
Mediapills recognizes a few roles. Unlike ASF’s projects, our structure is a way
simpler.
There are only two types:

	A Contributor
	is a user who contributes to a project in the form of code or documentation.
Developers take extra steps to participate in a project,are active on the
developer forums, participate in discussions, provide PRs (patches),
documentation, suggestions, and criticism. Contributors are also known as
developers.

	A Committer
	is a developer that was given write access to the code repository. Not
needing to depend on other people to commit their patches, they are actually
making short-term decisions for the project. By submitting your code or other
content to the project via PR or a patch, a Committer agrees to transfer the
contribution rights to the Project. From time to time, the project’s
committership will go through the list of contributions and make a decision to
invite new developers to become a project committer.

RTC model

Mediapills supports Review-Then-Commit model of development. The following
rules are used in the RTC process:

	a developer should seek peer-review and/or feedback from other developers

through the PR mechanism (aka code review).

	a developer should make a reasonable effort to test the changes before

submitting a PR for review.

	any non-document PR is required to be opened for at least 24 hours for

community feedback before it gets committed unless it has an explicit +1
from a committer

	any non-document PR needs to address all the comment and reach consensus

before it gets committed without a +1 from other committers

	a committer can commit documentation patches without explicit review

process. However, we encourage you to seek the feedback.

Changelog

Warning

This Document Page Under Construction

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

v0.1.0 (2021-08-23)

Minor release

Added

	Added module src.mediapills.dependency_injection.exceptions class RecursionError

	Added codecov [https://app.codecov.io/gh/mediapills/dependency-injection] integration

	Added badges: requires.io [https://requires.io/github/mediapills/dependency-injection/requirements], codecov [https://app.codecov.io/gh/mediapills/dependency-injection], actions [https://github.com/mediapills/dependency-injection/actions], py_versions [https://pypi.org/project/mediapills.dependency-injection/], license [https://github.com/mediapills/dependency-injection/blob/main/LICENSE.md], downloads [https://pepy.tech/project/mediapills-dependency-injection], wheel [https://pypi.org/project/mediapills.dependency-injection/] and codeclimate [https://codeclimate.com/github/mediapills/dependency-injection]

	Added files: LICENSE.md and CONTRIBUTING.md

	Added classifiers and project_urls sections in file setup.cfg

	Added py36, py37 and py39 into section envlist in tox.ini file

Other

	Changed mypy, pytest-cov and build modules version

	Changed README.rst

	Changed value in python_requires section in setup.cfg file from 3.8 to 3.5

	Changed code-analysis.yml workflow file

v0.0.2 (2021-08-22)

Patch release

Added

	Created decorator handle_unknown_identifier()

	Created module mediapills.dependency_injection class Container methods: __getitem__(), __setitem__(), values(), items(), copy(), update() and protect()

	Created TestInjector unit test case

Other

	Changed module mediapills.dependency_injection class name from Container to Injector

	Changed name from TestContainer to TestContainerBase unit test case

v0.0.1 (2021-08-21)

Minor release

Added

	Created .coveragerc file specifies python coverage [https://coverage.readthedocs.io] configuration

	Created .gitignore file specifies intentionally untracked files

	Created .pre-commit-config.yaml file specifies pre-commit [https://pre-commit.com/] configuration

	Created Makefile the make utility

	Created pyrightconfig.json the Pyright [https://github.com/microsoft/pyright] flexible configuration

	Created python package builder setup.py and setup.cfg

	Created module mediapills.dependency_injection class Container

	Created module src.mediapills.dependency_injection.exceptions classes: BaseContainerException, ExpectedInvokableException, FrozenServiceException, InvalidServiceIdentifierException, UnknownIdentifierException and RecursionInfiniteLoopError

	Created unit tests case TestContainer

	Created virtualenv [https://virtualenv.pypa.io/en/latest/] management file tox.ini

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mediapills	

 	
 	
 mediapills.dependency_injection	

 	
 	
 mediapills.dependency_injection.exceptions	

Index

 _
 | B
 | C
 | E
 | F
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__delitem__() (Container method)

 	__getitem__() (Container method)

 	
 	__setitem__() (Container method)

 	_cp_func() (Container static method)

 	_freeze() (Container method)

B

 	
 	BaseInjectorException

C

 	
 	clear() (Container method)

 	
 	Container (class in mediapills.dependency_injection)

 	copy() (Container method)

E

 	
 	ExpectedCallableException

F

 	
 	FrozenServiceException

I

 	
 	items() (Container method)

M

 	
 	
 mediapills

 	module

 	
 mediapills.dependency_injection

 	module

 	
 mediapills.dependency_injection.exceptions

 	module

 	
 	
 module

 	mediapills

 	mediapills.dependency_injection

 	mediapills.dependency_injection.exceptions

P

 	
 	ProtectedServiceException

R

 	
 	raw() (Container method)

 	
 	RecursionInfiniteLoopError

S

 	
 	service() (Container method)

T

 	
 	template() (Container method)

U

 	
 	UnknownIdentifierException

 	
 	update() (Container method)

V

 	
 	values() (Container method)

mediapills

Subpackages

	mediapills.dependency_injection
	mediapills.dependency_injection.exceptions

mediapills.dependency_injection

Submodules

	mediapills.dependency_injection.exceptions

Package Contents

Classes

	Container

	Container DI implementation.

	
class Container(*args, **kw)

	Bases: dict

Container DI implementation.

	
_freeze(self) → None

	Warm up all offsets.

	
__getitem__(self, key: Any) → Any

	Return the value at specified offset.

	
__setitem__(self, key: Any, val: Any) → None

	Assign a value to the specified offset.

	
__delitem__(self, key: Any) → None

	Unset an offset.

	
clear(self) → None

	Remove all offsets.

	
values(self) → Any

	Return a new view of the dictionary’s values.

	
items(self) → Any

	Return a new view of the dictionary’s items.

	
copy(self) → Any

	Return a shallow copy of the dictionary.

	
update(self, others: Union[dict, MutableMapping]) → None

	Update the dictionary with the key/value pairs from other,
overwriting existing keys.

	
raw(self, key: Any) → Any

	Get a parameter or the closure defining an object.

	
template(self, key: str, template: str) → None

	Format the specified value(s) and insert them inside the string’s
placeholder.

	
static _cp_func(func: Any) → Any

	Make deepcopy of a function.
Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)

	
service(self, key: str, mode: int = SERVICE_MODE_COMMON) → Callable

	Assign a callable value to the specified offset.

mediapills.dependency_injection.exceptions

Module Contents

	
exception BaseInjectorException

	Bases: Exception

Base Dependency Injection Container Exception.

	
exception ExpectedCallableException

	Bases: BaseInjectorException

A closure or invokable object was expected.

	
exception FrozenServiceException

	Bases: BaseInjectorException

An attempt to modify a frozen service was made.

	
exception ProtectedServiceException

	Bases: BaseInjectorException

An attempt to extend a protected service was made.

	
exception UnknownIdentifierException

	Bases: BaseInjectorException, KeyError

The identifier of a valid service or parameter was expected.

	
exception RecursionInfiniteLoopError

	Bases: BaseInjectorException, RecursionError

The interpreter detect infinite services dependency depth.

 nav.xhtml

 Table of Contents

 		
 Dependency Injection Documentation

 		
 Overview

 		
 Roles

 		
 Pros

 		
 Cons

 		
 Install

 		
 Linux and Mac OS

 		
 Windows (CMD/PowerShell)

 		
 Using the Container

 		
 __setitem__

 		
 __getitem__

 		
 Definitions

 		
 Lazy Loading

 		
 Definition types

 		
 Scalars

 		
 Generic Container Type Objects

 		
 Factories

 		
 Objects

 		
 Autowired Objects

 		
 Aliases

 		
 Environment Variables

 		
 String Expressions

 		
 Wildcards

 		
 How to contribute

 		
 Roles

 		
 RTC model

 		
 Changelog

 		
 v0.1.0 (2021-08-23)

 		
 Added

 		
 Other

 		
 v0.0.2 (2021-08-22)

 		
 Added

 		
 Other

 		
 v0.0.1 (2021-08-21)

 		
 Added

_static/minus.png

_static/plus.png

_static/file.png

